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The influence of microplasticity caused by the motion of dislocation segments on the propagation of elastic
vibrations in structural materials is considered. It is shown that the character of motion of a dislocation seg-
ment exerts its effect on the propagation velocity of an acoustic wave. This fact should be taken into account
when nonstationary frequency-phase methods of measuring the physical parameters of a medium are used.

Introduction. As is known, in structural materials, in order to impart certain service properties to them such
as, e.g., high-temperature strength, elasticity, wear resistance, etc., a definite type of defect structure is being formed,
which also includes extensive and point defects that make it possible either to stabilize the position of dislocations in
space or permit their displacement in close margins, thereby imparting certain properties relating to the hardness, brit-
tleness, and elasticity of the materials. At the same time, the propagation of ultrasonic vibrations is influenced by mi-
croplasticity, which enhances dissipative processes. Moreover, even an insignificant displacement of dislocation
segments in the field of the stresses of a wave leads to a partial irreversible deformation with a loss of elastic prop-
erties and a decrease in the velocity of ultrasound. In application to nonstationary frequency-phase methods of meas-
uring the physical parameters of the medium which are based on the tracing of changes in the difference of phases
between the sounding and reference ultrasonic waves, the indicated change in the velocity of sound is to be addition-
ally taken into account [1, 2]. Here, we consider some characteristic features of the behavior of a dislocation segment
exposed to the effect of an alternating stress of low and intermediate frequency with allowance for the effect of tem-
perature mechanisms on elastic interaction of substitutional impurities with dislocations in the atmospheres of point de-
fects. The contribution of the indicated processes to the phenomenon of microplasticity has been analyzed with the
example of the propagation of the energy of elastic vibrations.

Statement of the Problem and Its Solution. The threshold stresses of the onset of microplasticity as a re-
sult of the operation of dislocation segments according to the Frank–Reed model on alternating loading represent a
certain analog of the yield point on static loading. The irreversibility of microscopic deformation as an indicator of
plasticity at any type of loading is associated with the motion of already available dislocations as well as with the
possibility of generation of new dislocation loops by a fixed source. The well-known principles of the dynamics of a
dislocation segment in describing internal friction in the approximation of a string model [3–5] have been adapted
within the framework of the present problem to the problem of allowance for not only inertial, viscous, and elastic
forces, but also for additional forces of interaction with impurity atoms. As is known, impurities form atmospheres
around extensive defects, and the motion of dislocations depends on the species and size of foreign interstitial and
substitutional atoms.

As an initial approximation in consideration of the problem, a string model of the dynamics of a dislocation
segment with a modified right-hand side has been selected. In accordance with further development, by Swartz and
Virtman, of Koehler–Granato–Lucke’s theory of the absorption of the energy of elastic vibrations, a dislocation in a
material experiences the action of the force that prevents its displacement, i.e., the force directed opposite to the stress
applied [6, 7]. This force owes its origin to the presence of the binding energy between the edge dislocation and an
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impurity atom from the atmosphere surrounding this dislocation. The magnitude and sign of the binding energy are de-
termined by the distance between the impurity atom and the dislocation core, as well as by its position relative to the
extraplane, respectively. A large part is played here by the difference between the sizes of impurity atoms and the
atoms of the material. On the other hand, the very quantity or concentration of impurity atoms near a dislocation and
their Friedel distribution are prescribed by the sign of the binding energy and by the ratio of this energy to the char-
acteristic energy of thermal vibrations which enters in the so-called Boltzmann factor.

As a first approximation we selected the following model: in a metallic material the impurity atoms are pre-
dominantly substitutional atoms with radii exceeding those of base atoms. They are attracted to the region located
under the extraplane, and in these positions they possess a negative binding energy. Consequently, on exposure to an
external alternating elastic stress such atoms will prevent the motion of the segment. This means that in such an ap-
proach the value of the amplitude of the external stress decreases effectively. Then it is advisable that the differential
equation which describes small-amplitude vibrations of the segment in the field of the given alternating stress be rep-
resented as follows:
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Here A = ρb2 ⁄ π is the effective mass of dislocation per its unit length; C = 
2Gb2
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mines the elastic self-action of the segment on its extension; bσ is the amplitude value of the alternating stress, re-
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segment with the impurity atoms in the Cottrell atmosphere with account for their position relative to the extraplane.
In further calculations, the effective stress of elastic interaction of impurities with the dislocation segment, which par-

tially compensates the action of the external alternating stress, will be designated as D = 
Cξci

4
 exp 





W
kT



.

In order to solve Eq. (1) we will apply an operational method which implies direct and inverse integral trans-
formation in accordance with the expressions
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In the course of transformation one should perform direct and inverse transformation of variables ωt → t ′ → t, which
allows one to reduce the partial differential equation (1) to an ordinary second-order inhomogeneous algebraic equation
with constant coefficients for integral Laplace images:
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Applying the method of variation of the Lagrange arbitrary constant to Eq. (3), we obtain an expression for
the local shift of the segment from the equilibrium position along its length:
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Here Ω = 
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 and D1 and D2 are the integration constants which are to be found using realistic bound-

ary conditions. To calculate D1 and D2 we apply the condition of zero displacement of the segment at its pinning

points for both the direct time and the inverse one after the Laplace transformation.
As a result, we obtain
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The area covered by the dislocation segment in the process of vibration under the action of an alternating
force determines the degree of its readiness to come into action when the central part attains a certain critical displace-
ment from the equilibrium position. For the convenience of analyzing and considering the combined nonequilibrium
state of the segment, as the next step it is advisable to determine the length-averaged displacement via summation of
local contributions:
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Integration of (5) according to Eq. (6) yields the length-averaged displacement which is a parameter depending only
on the variable for integral transformation of s:
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After having performed the procedure of inverse integral transformation similarly to Eq. (2) with application
of contour integration for the functions of a complex variable and of the theory of residues, we determine the average
displacement of the dislocation segment as a function of time as follows:
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According to Eq. (8), the average displacement of the dislocation of the segment has an oscillating compo-
nent as well as a relaxation-type component. Such a solution complies with the presence of the process of transi-
tion and with the motion established at a frequency of an exciting external force. As numerical estimates show,
the characteristic time of relaxation Bl2 ⁄ 2C for a wide range of metals attains a value on the order of 10−1–10−5

sec. Consequently, during a small period after the application of external loading the transient processes with the
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relaxation time Bl2 ⁄ 2C are completed and only asymptotic values of the parameters typical of forced vibrations of
the segment remain. Then the asymptotically averaged displacement along the length can be presented as a function
of time in the form
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which, using Euler’s equations, can be easily reduced to expressions containing trigonometric functions:
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In expression (10), the length-averaged displacement of the segment contains two components: that coinciding
in phase with a perturbing force and that π ⁄ 2 out of phase. The component of the segment displacement that is in-
phase with the driving force corresponds to a pure dissipationless motion of the segment, whereas the out-of-phase-mo-
tion component determines the weight of the forces of viscous friction. Formally, when the coefficient of dynamic
viscosity strives toward a large quantity, the expression for the amplitude of displacement may be reduced to the form

sζ (t)t = − 2b (σ − D)
3ωB

 cos (ωt) . (11)

From Eq. (11) it follows that in the presence of high viscous forces the displacement amplitude averaged over the seg-
ment length will be insignificant.

Discussion of Results and Analysis of the Relations Obtained. Figure 1 shows the length-averaged displace-
ment of the segment as a function of time for the range of frequencies of the order of hundreds of kHz. As is seen
from the figure, for a segment of length 10−2 cm the regime of established vibrations sets in on a lapse of 0.001 sec
after application of loading or after the arrival of the ultrasonic wave front.

Fig. 1. Average displacement of a segment of length l = 10−4 m as a function
of time. G = 4⋅1010 Pa, ν = 0.3, B = 5⋅10−4 Pa⋅sec, ρ = 2.7⋅103 kg/m3, b =
4⋅10−10 m, ω = 105 rad/sec. ζ, rel. units; t, sec.
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The dependence of the averaged displacement of such a segment at time t = 0.001 sec at different values of
viscosity force is presented in Fig. 2. According to the general principles, an increase in the frequency of an ultrasonic
field at a considerable level of viscosity forces leads to a decrease in the averaged displacement and to an oscillating
change of the phase. The figure shows the undesirable range of frequencies the vibrations at which lead to elevated
levels of plastic deformation.

On the basis of expression (10), applying the traditional scheme of calculation, we may determine the change
in the rate of elastic vibrations. Under the conditions of an elastic medium, the equation of a wave is written as
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Using the expression for the amplitude of displacement of the dislocation segment in the form
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and (13), we obtain an equation for the speed of an elastic wave:
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Fig. 2. Average displacement of a segment of length l = 10−4 m depending on
frequency at t = 0.001 sec: 1) B = 10−3; 2) 10−4; 3) 10−5 Pa⋅sec. G, 4⋅1010 Pa,
ν = 0.3, ρ = 2.7⋅103 kg/m3, b = 4⋅10−10 m. ζ, rel. units; ω, rad/sec.
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The dependence of the relative change in the velocity on frequency (Fig. 3) reveals an extremum that is a
consequence of the joint action of two factors that were considered when the results of calculations were discussed
(see Figs. 1 and 2). The depth of the extremum shows the range of change in velocity and its coupling with the me-
dium parameters. It is seen that the magnitude of the extremum is proportional to the squared length of the segment.
Thus, for a section of length 10−4 m it amounts to about 4⋅10−2 and for 10−5 m to about 4⋅10−4. The position of the
extremum is shifted in this case to the region of higher frequencies. Physically this means that at low frequencies on
a relatively large displacement of the segment the phenomenon of microplasticity exerts a stronger effect on the seg-
ment than at high frequencies. In the region of high frequencies with a small amplitude of displacement, the contribu-
tion of dynamic plastic deformation becomes insignificant, especially for short dislocation segments.

It should be noted that elastic moduli are themselves weak functions of temperature, and even in the approxi-
mation of a static loading the amplitude of the displacement of a dislocation segment changes little with temperature.
Calculation by Eq. (14) showed that the relative change in the displacement amplitude with such an approximation in
the temperature range 100–500 K does not exceed 1%. Allowance for the interaction of the dislocation segment with
impurity atoms resulted in the displacement amplitude at low temperatures becoming more sensitive to the distribution
of impurities in the region of the segment, whereas in the region of high temperatures the presence of nonequilibrium
configurations of impurity atoms affects the dynamic properties of the segment to a lesser degrapostropue. This is due
to the fact that at low temperatures the concentration of impurity atoms in Cottrell’s and Snoek’s atmospheres in-
creases up to their saturation and precipitation of individual new phases, whereas with an increase in temperature the
clouds of the atmospheres of impurity atoms near dislocations are scattered right up to the attainment of equilibrium
concentration typical of the region far from extensive defects. We note that regardless of the type of impurities with
respect to the sizes of their atoms relative to the inherent atoms one should select a negative energy of interaction in
the sense that the substitutional impurities with atoms larger than the inherent ones will diffuse and settle under the
dislocation extraplane, whereas the substitutional impurities with atoms smaller than the inherent ones will diffuse and
settle in compression regions, i.e., above the dislocation extraplane. For this reason, in the first approximation, when
analyzing the values of the binding energy of impurities with dislocation it is advisable to select values for the az-
imuthal angle and distances of an impurity atom to the extraplane that would correspond to the maximum binding en-
ergy in absolute value, with it being negative in sign.

A change in temperature exerts its effect on the motion of the dislocation section in two ways, viz., via the
coefficient of dynamic viscosity, which at temperatures on the order of magnitude of the Debye temperature or higher
is a linear function of temperature, on the one hand, and via the elastic forces of interaction of the segment with im-
purities in the far-range stress fields, on the other hand.

Fig. 3. Relative change in the velocity of propagation of elastic vibrations as
a function of frequency for sections of different lengths: 1) l = 10−4; 2) 10−5

m. ω, rad/sec.
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In order to estimate the combined effect of temperature mechanisms on time-alternating loading, it is neces-
sary to carry out a numerical experiment on modeling the effect of the above-cited factors on the behavior of a model
dislocation segment of different lengths. And at the level of phenomenological correction parameters it is necessary to
take into account the factor of great deviations from the equilibrium of the segment and the finite rate of collapse of
the segment on attainment of critical bends. It is advisable to carry out correction using the techniques of consideration
of the Frank–Reed source on finite-constant loading.

NOTATION

b, Burgers vector, m; B, coefficient determining the force of dynamic viscous friction, Pa⋅sec; ci, volumetric
equilibrium concentration of impurities far from the dislocation segment, m−3; G, elastic rigidity modulus, Pa; k,
Boltzmann constant, J/K; l, length of the dislocation section, m; r, distance from the dislocation core to an impurity
atom, m; Ri, radius of an impurity atom, m; Rb, radius of an inherent atom, m; s, parameter of integral transformation;
t, time, sec; T, absolute temperature, K; V, volume, m3; W, energy of binding of the dislocation segment with impurity
atoms, J; x, direction of propagation of an acoustic wave, m; y, direction along the length of the dislocation segment,
m; ε, deformation; εpl and εel, plastic and elastic components of deformation; θ, azimuthal angle between the Burgers
vector and the radius-vector of an impurity atom, rad; Λ, total length of dislocation segments in a volume V, m; ν,
Poisson coefficient; ρ, density of a substance, kg/m3; ζ, value by which a dislocation segment shifts from the equilib-
rium position along its length, m; σ, amplitude value of the alternate pressure in the acoustic wave field, Pa; ω, cyclic
frequency of elastic vibrations, rad/sec; υ, velocity of elastic wave propagation, m/sec. Subscripts: i, impurity; b, basic;
pl, plastic; el, elastic.
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